163 research outputs found

    Aerosol-assisted CVD of cadmium diselenoimidodiphosphinate and formation of a new iPr2N2P3+ ion supported by combined DFT and mass spectrometric studies

    Get PDF
    Aerosol-assisted chemical vapour deposition (AACVD) of Cd[(SePiPr2)2N]2 is shown to deposit cadmium selenide and/or cadmium phosphide on glass substrates, depending upon the growth conditions. The phase, structure, morphology and composition of the films were characterised by X-ray powder diffraction (XRD), scanning electron microscopy, energy dispersive X-ray analysis and X-ray photoelectron spectroscopy. The XRD indicated a hexagonal phase for cadmium selenide, whilst cadmium phosphide was monoclinic. Pyrolysis gas chromatography-mass spectrometry and density functional theory were used to deduce a breakdown mechanism for the deposition that favoured the formation of a new aromatic iPr2N2P3+ ion

    Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1

    Get PDF
    Tandem pore domain (K2P) potassium channels modulate resting membrane potentials and shape cellular excitability. For the mechanosensitive subfamily of K2Ps, the composition of phospholipids within the bilayer strongly influences channel activity. To examine the molecular details of K2P lipid modulation, we solved cryo-EM structures of the TREK1 K2P channel bound to either the anionic lipid phosphatidic acid (PA) or the zwitterionic lipid phosphatidylethanolamine (PE). At the extracellular face of TREK1, a PA lipid inserts its hydrocarbon tail into a pocket behind the selectivity filter, causing a structural rearrangement that recapitulates mutations and pharmacology known to activate TREK1. At the cytoplasmic face, PA and PE lipids compete to modulate the conformation of the TREK1 TM4 gating helix. Our findings demonstrate two distinct pathways by which anionic lipids enhance TREK1 activity and provide a framework for a model that integrates lipid gating with the effects of other mechanosensitive K2P modulators

    Dimeric structure of the bacterial extracellular foldase PrsA

    Get PDF
    Secretion of proteins into the membrane-cell wall space is essential for cell wall biosynthesis and pathogenicity in Gram-positive bacteria. Folding and maturation of many secreted proteins depend on a single extracellular foldase, the PrsA protein. PrsA is a 30 kDa protein, lipid-anchored to the outer leaflet of the cell membrane. The crystal structure of Bacillus subtilis PrsA reveals a central catalytic parvulin-type prolyl isomerase domain, which is inserted into a larger composite NC domain formed by the N- and C-terminal regions. This domain architecture resembles, despite a lack of sequence conservation, both trigger factor, a ribosome-binding bacterial chaperone, and SurA, a periplasmic chaperone in Gram-negative bacteria. Two main structural differences are observed in that the N-terminal arm of PrsA is substantially shortened relative to trigger factor and SurA and in that PrsA is found to dimerize in a unique fashion via its NC domain. Dimerization leads to a large, bowl-shaped crevice, which might be involved in vivo in protecting substrate proteins from aggregation. NMR experiments reveal a direct, dynamic interaction of both the parvulin and the NC domain with secretion propeptides, which have been implicated in substrate targeting to PrsA

    Epilogue

    No full text
    • …
    corecore